
Foundation XML for Flash

Sas Jacobs



Lead Editor
Chris Mills

Technical Reviewer
Kevin Ruse

Editorial Board
Steve Anglin, Dan Appleman 

Ewan Buckingham, Gary Cornell 
Tony Davis, Jason Gilmore 

Jonathan Hassell, Chris Mills
Dominic Shakeshaft, Jim Sumser

Associate Publisher
Grace Wong

Project Manager
Pat Christenson

Copy Edit Manager
Nicole LeClerc

Copy Editor
Liz Welch

Assistant Production Director
Kari Brooks-Copony

Production Editor
Kelly Winquist

Compositor
Katy Freer

Proofreader
Lori Bring 

Indexer
Broccoli Information Management

Artist
Katy Freer

Cover Designers
Corné van Dooren, Kurt Krames

Manufacturing Director
Tom Debolski

Foundation XML for Flash
Copyright © 2006 by Sas Jacobs

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or by any information storage or retrieval system, without the prior written permission of the

copyright owner and the publisher. 

ISBN (pbk): 1-59059-543-2 

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, New York, NY 10013. 
Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. 

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA 94710. 
Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit www.apress.com. 

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has been taken in the
preparation of this work, neither the author(s) nor Apress shall have any liability to any person or entity with respect to any loss or

damage caused or alleged to be caused directly or indirectly by the information contained in this work. 

The source code for this book is freely available to readers at www.friendsofed.com in the Source Code section.

Credits





125

Excerpt from Chapter 4

In the earlier chapters, you learned about XML and some of the related technologies.
We covered the uses for XML and the advantages that it provides over other forms
of data storage. In this chapter, we’ll look at how to work with XML in Flash. You’ll
create Flash movies that include data from external XML documents. You’ll also cre-
ate and modify XML content within Flash and learn how to send it to other applica-
tions. We’ll work through several examples so that you can practice what we cover.

This chapter will introduce you to the XML class—the most common way to work
with XML documents in Flash. In Chapters 8 and 9, we’ll look at another way to work
with XML documents: by using data components.

If you’re not familiar with object-oriented programming, the term class refers to the
design of an object. It specifies the rules for the way the object works and lists all the
methods and properties for the object. The XML class contains all the information
needed for working with XML objects in Flash. 

The XML class was introduced in Flash 5, and since that time, the ActionScript asso-
ciated with it hasn’t changed significantly. The XML class became a native object in
Flash 6, which increased its speed compared with Flash 5. The XML class stores XML
content in document trees within Flash. The class allows you to

Create new XML documents or fragments

Load external XML documents

Modify XML content

Send XML information from Flash

USING THE XML CLASS



The XML class includes methods and properties to work with XML document trees. You’ll also use a
related class, the XMLNode class, which allows you to work with specific nodes in an XML document
tree. You can find a summary of the methods, properties, and events of both classes in the tables at
the end of this chapter.

When we create a new XML object from the XML class, we call the object an instance of the class, and
the process of creating the object is known as instantiation. One way to view the difference is to see
the XML class as a template that you use to create XML objects.

We’ll start this chapter by learning how to load an external XML document into a Flash XML object.
We’ll look at how you can extract information from the document tree so you can add it to your Flash
movie. You could do this with either a physical document saved with an .xml file extension or a stream
of XML information. If you’re working with an information stream, you can load XML content generated
by a PHP, ColdFusion, or ASP.NET server-side page or from a web service. We’ll cover web services in
Chapter 9.

Loading an XML document into Flash
The process of loading an XML document into Flash involves the following steps:

1. Create an XML object.

2. Specify what happens after the XML document loads, that is, identify a function to deal with
the loaded XML information.

3. Load the external document into the XML object. Flash parses the data into the XML document
tree.

After the document has been loaded and parsed into an XML document tree, an event handler calls
the function specified in step 2. Usually, this function checks first to see if the XML document has been
loaded successfully. If so, the function extracts the information from the XML document and adds it to
the Flash movie. It’s common to use the XML document to populate UI components.

Using the load method
The following code demonstrates one way to load in an external XML document. It uses ActionScript
version 2.0.

var myXML:XML = new XML();
myXML.ignoreWhite = true;
myXML.onLoad = functionName;
myXML.load("filename.xml");

On the first line, I create a new XML object called myXML. The second line sets the ignoreWhite prop-
erty to true. This means that Flash will ignore white space such as tabs and returns in the XML docu-
ment. If you forget to set this property, blank lines will be treated as nodes, which can cause problems
when you’re trying to extract information.

126

CHAPTER 4



On the third line, I use the onLoad event handler to refer to the function that will be called after the
file has loaded. In the example, I’ve used the name functionName. The last line loads the file called
filename.xml. If this were a real example, I’d have to create the function called functionName to
process the XML content from filename.xml after the file loads.

I can also load the XML document from a subdirectory of the current directory:

var myXML:XML = new XML();
myXML.ignoreWhite = true;
myXML.onLoad = functionName;
myXML.load("foldername/filename.xml");

Be aware that if your XML document includes file names and file paths, storing the XML document in a
subfolder might cause you problems. When you try to use this information in a movie, Flash calculates
the relative paths from the location of the .swf file. As this may be in a different location from the XML
or .swf file, the movie may not be able to find the files at those locations. To avoid these potential prob-
lems, it’s much easier if you keep your XML document in the same folder as your Flash movie.

In the code you’ve seen so far, I’ve used a file name ending with the .xml extension. However, you
aren’t limited to this type of file. You can load any type of file providing it results in an XML document.
This means that you can load a server-side PHP, ColdFusion, Java, or ASP.NET file as long as it generates
XML content.

If you do load a server-side file into your XML object, you’ll need to include the full path so that the
web server can process the server-side code. I’ve shown an example here; we’ll learn more about
working with server-side documents a little later in this chapter.

var myXML = new XML();
myXML.ignoreWhite = true;
myXML.onLoad = functionName;
myXML.load("http://localhost/webfolder/filename.aspx");

Understanding the order of the code
You may have noticed that, in the code samples above, I specified the load function before I loaded
the XML document. On the surface, this doesn’t make sense. Shouldn’t I wait until the XML file loads
and then specify which function to call?

In Flash, some ActionScript code doesn’t run in a strict order. Lines don’t necessarily wait for other
lines to complete before they run. Much of the code that we write is in response to a specific event
such as a mouse click. In this case, the event is the loading of an external XML file into an XML object.
We call this asynchronous execution. 

If we specified the load function after the load line, the XML file might have already finished loading
before we set the function that should be called. This would mean that the onLoad function would be
skipped completely. The only way to be sure that you call the function correctly is to set a reference
to it before you load the XML file. 

127

USING THE XML CLASS



Understanding the onLoad function
After the XML document has finished loading, Flash calls the function that you specified in the onLoad
line. The function is called by the onLoad event handler, and it runs after the XML document has been
received by Flash and parsed into the document tree. You can assign the onLoad function with the
following line:

myXML.onLoad = functionName;

If you’ve worked with ActionScript before, you’ll notice that the function doesn’t include those brack-
ets that you’re used to seeing after the function name, for example, functionName(). That’s because
we’re not actually calling the function in this line; instead, we’re assigning it to the onLoad event han-
dler. The call will happen after the XML document is loaded and parsed.

Any onLoad function that you create automatically includes a parameter that tells you whether or not
the file loaded successfully. The onLoad function should always test this parameter first before you
start to process the XML document. You can also check the status property of the loaded document
to see if there were any problems.

You can see this process in the following sample code: 

var myXML:XML = new XML();
myXML.ignoreWhite = true;
myXML.onLoad = myFunction;
myXML.load("filename.xml");
function myFunction(success:Boolean):Void {
if (success) {
//process XML content

}
else {
//display error message

}
}

In these lines, I’ve defined the function myFunction with a parameter called success. You can use any
name you like for this parameter. The important thing to remember is that the parameter is Boolean,
so it can only have one of two values: true or false.

The first line in the function checks to see if the value of the parameter is true; that is, if the XML doc-
ument has loaded successfully. If so, the function would normally then include lines that process the
XML content. Otherwise, if the document didn’t load successfully, we’d probably want to display an
error message.

Using the line

if (success) {

is equivalent to using

if (success == true) {

128

CHAPTER 4



I could also have used an inline function as shown here:

var myXML:XML = new XML();
myXML.ignoreWhite = true;
myXML.onLoad = function (success:Boolean):Void {
if (success) {
//process XML content

}
else {
//display error message

}
};
myXML.load("filename.xml");

Either of the two approaches shown here is acceptable. If you create the onLoad function separately,
rather than inline, you will be able to reuse it when you load other XML documents. After all, if your
XML documents have the same structure, you’ll probably want to process them in the same way. Using
the same function allows you to reuse the code and means that you’ll only have to maintain one block
of ActionScript. If you’re loading a single XML document into your movie, it doesn’t matter which
method you choose.

The code shown so far uses the onLoad event handler. Flash provides another event handler for the
XML object: onData. Both events trigger after the content has been loaded into Flash. The difference
is that the onLoad event happens after the XML content has been parsed by Flash and added to the
XML document tree. The onData event takes place before parsing, so you can use this event to access
the raw XML from your external document. In most cases, you’ll use the onLoad event handler.

After you load the XML content into an XML object, you’ll need to add the data to your Flash movie.
Before you do this, you should check that the document has loaded successfully.

Testing if a document has been loaded
You can test whether an XML document has been loaded by checking the loaded property of the XML
object. The property returns a Boolean value and will display either true or false when traced in an
Output window. Here’s an example: 

var myXML:XML = new XML();
myXML.ignoreWhite = true;
myXML.onLoad = function (success:Boolean):Void {
trace (this.loaded);

};
myXML.load("filename.xml");

In case you’re wondering what the :Void means in myFunction(success:Boolean):Void,
it indicates what type of information the function returns. In this case, nothing is returned,
so I’ve used the word Void. You could also specify the datatype for the value returned by
the function, for example, String or Number. 

129

USING THE XML CLASS



In the sample code, this refers to the XML object. I can use the keyword this because I’m inside the
onLoad function for the XML object.

Note that the loaded property may return a value of true even when errors have occurred in parsing
the XML content. Flash provides a mechanism for finding errors.

Locating errors in an XML file
When you load an external XML document into Flash, it’s possible that it may not be well formed.
Remember that well-formed documents meet the following requirements:

The document contains one or more elements.

The document contains a single root element, which may contain other nested elements.

Each element closes properly.

Start and end tags have matching case.

Elements nest correctly.

Attribute values are contained in quotes.

Where a document is not well formed, Flash may have difficulty in parsing it into the document tree.
Flash may still indicate that the document has loaded successfully, even if it wasn’t parsed correctly.

The XML class has a status property that indicates any problems that occurred when parsing the XML
document. This property returns a value between 0 and –10; the values for each are shown here:

0—No error; the parse was completed successfully. 

–2—A CDATA section was not properly terminated. 

–3—The XML declaration was not properly terminated. 

–4—The DOCTYPE declaration was not properly terminated. 

–5—A comment was not properly terminated. 

–6—An XML element was malformed. 

–7—The application is out of memory. 

–8—An attribute value was not properly terminated. 

–9—A start tag was not matched with an end tag. 

–10—An end tag was encountered without a matching start tag.

Where a document contains multiple errors, the status property will only return one error value.
Even though Flash may detect an error during parsing, it may still be possible to find information from
all or part of the document tree.

130

CHAPTER 4



To show you an example of the status numbers, let’s load the resource file address1.xml file into
Flash. The document is missing an ending </phoneBook> tag, as shown here:

<?xml version="1.0" encoding="UTF-8"?>
<phoneBook>
<contact id="1">
<name>Sas Jacobs</name>
<address>123 Some Street, Some City, Some Country</address>
<phone>123 456</phone>

</contact>

I’ve saved this example in the resource file simpleloadstatus.fla. Figure 4-1 shows the status code
that displays when I test the file. In this case, the code is –9, indicating a mismatch between start and
end tags within the document.

Figure 4-1. The Output window displaying the status property

So far, we’ve covered the theory behind loading external XML documents into Flash. We create an
XML object and load a file, and Flash parses the contents into a document tree. We can then use a
function to add the XML content to our movie. 

Each time you load an external XML document, your code will probably start with the same steps:

1. Create the XML object.

2. Set the ignoreWhite property to true.

3. Specify the name of the function that will deal with the loaded XML document.

4. Load the XML document.

5. Within the load function, test whether the XML file has loaded successfully.

6. Display the document tree with a trace action to check the loaded contents.

We’ll work through an example to illustrate these steps. We’ll load an external XML document into
Flash and display it in an Output window. When you do this, you should see the same content that is
in the external document. 

131

USING THE XML CLASS



In this example, we’ll create a simple Flash movie that loads the address.xml file and displays it in an
Output window. You can see the completed example in the resource file simpleload.fla. 

1. Create a new Flash movie and click frame 1 on the Timeline. 

2. Save the document in the same folder as the address.xml file.

3. Add the following code into the Actions panel. You can open the panel by using the F9 short-
cut key.

var myXML:XML = new XML();
myXML.ignoreWhite = true;
myXML.onLoad = processXML;
myXML.load("address.xml");
function processXML(success:Boolean):Void {
if (success) {
trace(this);

}
else {
trace ("Error loading XML file");

}
}

In this example, I call the function processXML after the file address.xml loads. The function checks
to see if the XML document loads successfully by checking the variable success. If so, I use the trace
action to display the XML document tree in an Output window. If not, I display an error message in the
Output window.

Because the function has been called by the onLoad event of the XML object, I can use the word this.
In fact,

trace(this);

is the same as

trace(myXML);

4. Save the movie and test it with the CTRL-ENTER shortcut (CMD-RETURN on a Macintosh). You
should see an Output window similar to the one shown in Figure 4-2. The Output window dis-
plays the document tree from the XML object. I’ve saved the sample file simpleload.fla with
your resources.

Exercise 1: Loading an external XML document

132

CHAPTER 4



Figure 4-2. The Output window displaying XML content

5. If you see an error when you test the movie, it’s most likely to be due to a misspelling. Check
the XML document file name and the spelling of your success parameter within the function.
A sample error is shown in Figure 4-3.

Figure 4-3. The Output window displaying an error message

In the previous exercise, we loaded the file address.xml into Flash. We tested that the document loaded
successfully, and then we displayed the contents of the XML document tree in an Output window.
Tracing the document tree can be a useful way to test that you’ve loaded the XML document correctly.

With most objects in Flash, you’ll see [object Object] when you trace them in the
Output panel. If you trace an XML or XMLNode object, Flash uses the toString method to
display a text representation of the object. This is very useful when you want to view the
XML document tree. Using 

trace(myXML);

is the same as using

trace(myXML.toString());

133

USING THE XML CLASS



Points to note from exercise 1

It’s possible for you to change the XML content within Flash independently of the external XML
document. Flash doesn’t maintain a link back to the original document. If the external docu-
ment changes, it will have to be loaded again before the updated content displays within Flash.

Flash can’t update external documents. To update an external XML document, you’ll have to
send any changes you make to the document tree out of Flash to a server-side page for pro-
cessing. 

Earlier in the chapter, I discussed inline onLoad functions. I’ve re-created the preceding example
using an inline function. The code is shown here, and it’s saved in the resource file simple-
load2.fla: 

var myXML:XML = new XML();
myXML.ignoreWhite = true;
myXML.onLoad = function(success:Boolean):Void {
if (success) {
trace(this);

}
else {
trace ("Error loading XML file");

}
};
myXML.load("address.xml");

Testing for percent loaded
Loading a large XML document might take some time, and it’s useful to let the user know what’s hap-
pening. You may want to display a message showing the user that the XML file is loading. The XML
class allows you to find out how big the XML file is and how much has loaded, using the
getBytesLoaded and getBytesTotal methods.

You can use these methods with the setInterval action to check progress at given time intervals. You
can also use them in the onEnterFrame event handler of a movie. Loading small XML files is very quick,
so these methods are only going to be useful when you’re working with large XML files.

The following example is based on the code provided within the Flash help file. It shows how you can
test for the percentage of an XML file loaded using the setInterval action. You can find the example
in the resource file simpleloadpercent.fla. 

var myXML:XML = new XML();
myXML.ignoreWhite = true;
myXML.onLoad = processXML;
var intervalID:Number = setInterval(checkLoad, 5, myXML);
myXML.load("large.xml");
function processXML(success:Boolean):Void {
clearInterval(intervalID);
if (success) {
trace("loaded: " + this.getBytesLoaded());
trace ("total: " + this.getBytesTotal());

}

134

CHAPTER 4



else {
trace ("Error loading XML file");

}
}
function checkLoad(theXML:XML):Void {
var loaded:Number = theXML.getBytesLoaded();
var total:Number = theXML.getBytesTotal();
var percent:Number = Math.floor((loaded/total) * 100);
trace ("percent loaded: " + percent);

}

On my computer, despite loading an XML file of over 3 MB in size, the loading process only displays
the total file size.

The following example shows the same methods used with the onEnterFrame event handler. You can
see the example saved in the resource file simpleloadEnterFrame.fla.

var myXML:XML = new XML();
myXML.ignoreWhite = true;
myXML.onLoad = processXML;
var intervalID:Number = setInterval(checkLoad, 5, myXML);
myXML.load("large.xml");
this.onEnterFrame = function():Void {
var loaded:Number = myXML.getBytesLoaded();
var total:Number = myXML.getBytesTotal();
var percent:Number = Math.floor((loaded/total) * 100);
trace ("percent loaded: " + percent);
if (percent == 100) {
delete this.onEnterFrame;

}
}
function processXML(success:Boolean):Void {
if (success) {
trace("loaded: " + this.getBytesLoaded());
trace ("total: " + this.getBytesTotal());

}
else {
trace ("Error loading XML file");

}
}

Again, I am not able to get the percentage loaded value to display each time the movie enters a new
frame. You may wish to use these methods with caution. In my work, using a preloader for XML doc-
uments has rarely been necessary. If required, an alternative approach might be to show and hide a
movie clip that displays a loading message.

After you’ve loaded an external XML document, you’ll need to display the contents within your Flash
movie. The next section shows how you can extract information from an XML object. A little later,
we’ll use the techniques to populate UI components.

135

USING THE XML CLASS



Navigating an XML object
In Chapter 2, I talked about XML parsers. You might remember that we use a parser to process an XML
document. Once parsed, the software can work with the content from the XML document. 

There are two types of parsers: validating and nonvalidating. The difference is that validating parsers
compare an XML document against a schema or DTD to make sure that you’ve constructed the docu-
ment correctly. Nonvalidating parsers don’t do this.

Flash contains a nonvalidating parser. When you load an XML document into Flash, it processes the
contents and creates an XML document tree. If you include a reference to a schema or DTD within an
XML document, Flash won’t check the document for validity before it is loaded. 

The Flash document tree includes all elements from the XML document. Flash uses a family analogy to
refer to different branches within the tree. Elements can be children of another parent element, or
siblings. 

Each element includes a collection of child elements called childNodes. The collection is an array so
we can use the standard array methods. For example, we can determine how many elements are in the
collection using the length property. Elements with no child elements will have a childNodes length
of 0. We can also loop through the collection when we’re processing an XML object. 

In the address.xml file, shown here, the root element <phoneBook> has three child <contact> ele-
ments. We could programmatically work through each of the child elements, for example, adding
them to a List component.

<?xml version="1.0" encoding="UTF-8"?>
<phoneBook>
<contact id="1">
<name>Sas Jacobs</name>
<address>123 Some Street, Some City, Some Country</address>
<phone>123 456</phone>

</contact>
<contact id="2">
<name>John Smith</name>
<address>4 Another Street, Another City, Another Country</address>
<phone>456 789</phone>

</contact>
<contact id="3">
<name>Jo Bloggs</name>
<address>7 Different Street, Different City, UK</address>
<phone>789 123</phone>

</contact>
</phoneBook>

You can refer to a child element by its position in the collection. Because the childNodes collection is
an array, the first element is at number 0. The following line refers to the first child element of the
myXML object. You can also refer to children of an XMLNode object.

myXML.childNodes[0];

136

CHAPTER 4



The firstChild and lastChild properties allow you to refer to the first and last items in the
childNodes collection.

myXML.firstChild;
myXML.lastChild;

When you are processing an XML document tree, you usually start by referencing the root node of the
document. This is the parent of all other elements and is the firstChild or childNodes[0] of the
XML object.

All elements are children of the XML object, so you can refer to each one using its position within the
XML object. It’s a bit like a map. Start with the root node and move to the first child. Go to the second
child node and find the third child. Finish at the first child of this node. You can end up with long
paths as shown here:

myXML.firstChild.childNodes[1].childNodes[2].firstChild;

You’ll learn a bit more about locating specific child nodes in a document later in this chapter. In the
next section, I’ve shown the Flash notation for the XML elements in the file address.xml.

Mapping an XML document tree
I’ve shown the complete address.xml document here. Table 4-1 shows how you can refer to specific
parts of this document once it’s loaded into Flash. The table assumes that we’ve created an XML
object called myXML. 

<?xml version="1.0" encoding="UTF-8"?>
<phoneBook>
<contact id="1">
<name>Sas Jacobs</name>
<address>123 Some Street, Some City, Some Country</address>
<phone>123 456</phone>

</contact>
<contact id="2">
<name>John Smith</name>
<address>4 Another Street, Another City, Another Country</address>
<phone>456 789</phone>

</contact>
<contact id="3">
<name>Jo Bloggs</name>
<address>7 Different Street, Different City, UK</address>
<phone>789 123</phone>

</contact>
</phoneBook>

137

USING THE XML CLASS



Table 4-1. Mapping the XML document tree for address.xml

Element Flash XML Element Path

<?xml version="1.0" encoding="UTF-8"?> xmlDecl property

<phoneBook> myXML.firstChild or myXML.childNodes[0]

<contact id="1"> myXML.firstChild.firstChild or
myXML.childNodes[0].childNodes[0]

<name> myXML.firstChild.firstChild.firstChild or
myXML.childNodes[0].childNodes[0].
childNodes[0]

<address> myXML.firstChild.firstChild.childNodes[1] or
myXML.childNodes[0].childNodes[0].
childNodes[1]

<phone> myXML.firstChild.firstChild.lastChild or
myXML.childNodes[0].childNodes[0].childNodes[2]

<contact id="2"> myXML.firstChild.childNodes[1] or
myXML.childNodes[0].childNodes[1]

<name> (within contact 2) myXML.firstChild.childNodes[1].firstChild or
myXML.childNodes[0].childNodes[1].
childNodes[0]

<address> (within contact 2) myXML.firstChild.childNodes[1]. childNodes[1]
or myXML.childNodes[0].childNodes[1].
childNodes[1]

<phone> (within contact 2) myXML.firstChild.childNodes[1].lastChild or
myXML.childNodes[0].childNodes[1].
childNodes[2]

<contact id="3"> myXML.firstChild.childNodes[2] or
myXML.childNodes[0].childNodes[2]

<name> (within contact 3) myXML.firstChild.childNodes[2].firstChild or
myXML.childNodes[0].childNodes[2].
childNodes[0]

<address> (within contact 3) myXML.firstChild.childNodes[2].childNodes[1]
or myXML.childNodes[0].childNodes[2].
childNodes[1]

<phone> (within contact 3) myXML.firstChild.childNodes[2].lastChild or
myXML.childNodes[0].childNodes[2].
childNodes[2]

138

CHAPTER 4



You can replace the myXML references with this if you’re including the references in the onLoad func-
tion of the XML object. Placing any of the paths in a trace statement will display the complete ele-
ment in an Output window. For example, the following onLoad function traces the second contact’s
<name> element from the address.xml file, as shown in Figure 4-4.

var myXML:XML = new XML();
myXML.ignoreWhite = true;
myXML.onLoad = processXML;
myXML.load("address.xml");
function processXML(success:Boolean):Void {
if (success) {
trace(this.firstChild.childNodes[1].firstChild);

}
else {
trace ("Error loading XML file");

}
}

Figure 4-4. Tracing an element from the document tree

Understanding node types
The XML class stores XML content in a document tree. Earlier in the book, we learned that XML doc-
uments can contain

Elements

Attributes

Text

Entities

Comments

Processing instructions

CDATA

Within an XML document tree, Flash recognizes only two types of nodes—XML elements and text
nodes. You can access the attributes within an XML element but Flash ignores comments, processing
instructions, and CDATA. 

139

USING THE XML CLASS



You can use the property nodeType to identify which type of element you’re working with. The prop-
erty returns a value of 1 for element nodes and 3 for text nodes. It’s important to know which type
you’re working with because some properties of the XML class are specific to certain node types. This
code shows how you can use the nodeType property to display the node type:

trace(myXML.nodeType);
trace(myXMLNode.nodeType);

You can find the name of an element node by using the nodeName property. This is the name of the tag
included within the element, and you can use the property with an XML object or an XMLNode object.

trace(myXML.firstChild.nodeName);
trace(myXMLNode.nodeName);

Text nodes don’t have a tag name, so the nodeName property will return a value of null. 

A text node is the child of the parent element node. Instead of a nodeName, text nodes have a
nodeValue, which displays the text content. To display the text inside an element, you can use

trace(myXML.firstChild.firstChild.firstChild.nodeValue);

The nodeValue property for an element node will display null.

Table 4-2 shows some examples of how to access the text from the file address.xml.

Table 4-2. Locating the text nodes within XML document tree for address.xml

Text Flash XML Element Path

Sas Jacobs myXML.firstChild.firstChild.firstChild.firstChild.nodeValue or
myXML.childNodes[0].childNodes[0].childNodes[0].childNodes[0]
.nodeValue

7 Different Street, myXML.firstChild.childNodes[2].childNodes[1].firstChild.nodeValue
Different City, UK or myXML.childNodes[0].childNodes[2].childNodes[1].

childNodes[0].nodeValue

456 789 myXML.firstChild.childNodes[1].childNodes[2].firstChild.nodeValue or
myXML.childNodes[0].childNodes[1].childNodes[2].childNodes[0].
nodeValue

Again, you can replace the myXML references with this if you’re including these references in an
onLoad function. Adding any of the paths shown in Table 4.2 in a trace statement will display the com-
plete element in an Output window. 

The statements in the preceding table appear a little confusing. The paths are long, and it’s not easy to
figure out which element we’re targeting with paths like firstChild.childNodes[1].childNode[2].
Your code will be much easier to read if you create XMLNode variables. These variables can act as sign-
posts to specific parts of the XML document and make it easier to navigate the document tree.

140

CHAPTER 4



Creating node shortcuts
As you’ve seen, writing a path to a specific element within the document tree can be an arduous
process. It’s much easier to use an XMLNode variable to provide a shortcut to a specific position in the
document tree, as shown here:

var myXMLNode:XMLNode = myXML.firstChild.firstChild.firstChild;

By writing this line, you can use myXMLNode to refer to the element instead of the full path. If you use
descriptive names for the XMLNode objects, you’ll find it much easier to understand your code:

var NameNode:XMLNode = myXML.firstChild.firstChild.firstChild;
trace(NameNode);

You’d normally start this process by locating the root node of the document. Remember that each file
has a single root node that contains all of the other elements.

Finding the root node
The root node of the tree is always the first child of the XML object, so you can locate it with the fol-
lowing code. Both lines are equivalent.

myXML.firstChild;
myXML.childNodes[0];

If you are referring to the first child within the onLoad function, you can also use

this.firstChild;
this.childNodes[0];

Displaying the firstChild of the XML document in an Output window is almost the same as displaying
the entire XML document tree. The difference is that the firstChild doesn’t include the XML declaration.

In the resource file simpleload.fla, replacing the line trace (this); with trace(this.firstChild);
will show the document tree without the XML declaration.

var myXML:XML = new XML();
myXML.ignoreWhite = true;
myXML.onLoad = processXML;
myXML.load("address.xml");
function processXML(success:Boolean):Void {
if (success) {
trace(this.firstChild);

}
else {
trace ("Error loading XML file");

}
}

It can be useful to assign the root node to a variable so that you don’t have to keep writing
this.firstChild each time.

141

USING THE XML CLASS



Setting a root node variable
It’s often useful to set a variable for the root node. I like to use the variable name RootNode. You can
use the variable type XMLNode so that you’ll get code hints each time you type the variable name.
These two lines are equivalent, and you can use either:

var RootNode:XMLNode = myXML.firstChild;
var RootNode:XMLNode = myXML.childNodes[0];

If you’re referring to the root node from within the onLoad function, you can also use the word this:

var RootNode:XMLNode = this.firstChild;
var RootNode:XMLNode = this.childNodes[0];

Setting a variable provides a shortcut each time you want to refer to the root node. It saves you from
having to write myXML.firstChild or myXML.childNodes[0]. 

To get to the first child of the root node, you could use either of these two lines: 

this.firstChild.firstChild;
this.childNodes[0].childNodes[0];

You could also write

var RootNode:XMLNode = this.firstChild;
RootNode.firstChild;

or

var RootNode:XMLNode = this.childNodes[0];
RootNode.childNodes[0];

Using the descriptive name RootNode makes it much easier to identify your position within the XML
document. You can use the same approach with other elements within the XML document tree.

Displaying the root node name
You can find out the name of the root node by using its nodeName property:

var RootNode:XMLNode = myXML.firstChild;
trace(RootNode.nodeName);

This is equivalent to the single line

trace (myXML.firstChild.nodeName);

You can try this with your resource file simpleload.fla. Modify the onLoad function as shown here:

function processXML(success:Boolean):Void {
if (success) {
var RootNode:XMLNode = this.firstChild;
trace(RootNode.nodeName);

}

142

CHAPTER 4



else {
trace ("Error loading XML file")

}
}

When you test the movie, you should see an Output window similar to that shown in Figure 4-5.

Figure 4-5. Displaying the root node name

You can see this example in the resource file simpleprocess.fla.

When you first start working with the XML class, it can be a very useful to trace the name of the root
node as a first step. Making sure that the name is correct will help you to identify simple errors such
as forgetting to set the ignoreWhite property value to true.

Once you’ve located the root node, you can start working your way through the document tree to find
specific child nodes. Again, it’s useful to create variables for positions within the document tree to
make your code easier to understand.

Locating child nodes
Earlier in the chapter, you saw some examples of how to locate the child nodes within an XML object.
Tables 4-1 and 4-2 provide some useful summaries. You started with the root element and used prop-
erties to find a specific node.

Working with specific child nodes
To refer to a specific node in your document tree, you need to construct a path. You can refer to each
section of the path using properties like firstChild or a position in the childNodes collection such as
childNodes[2]. 

143

USING THE XML CLASS



For example, in the XML fragment that follows, the <contact> element is the firstChild of
the <phoneBook> root element, which is the firstChild of the XML object. The <name>, <address>,
and <phone> elements are childNodes[0], childNodes[1], and childNodes[2], respectively, of the
<contact> element.

<phoneBook>
<contact id="1">
<name>Sas Jacobs</name>
<address>123 Some Street, Some City, Some Country</address>
<phone>123 456</phone>

</contact>
</phoneBook>

To refer to the <address> element, I could use the path

myXML.firstChild.firstChild.childNodes[1];

or

myXML.childNodes[0].childNodes[0].childNodes[1];

I could combine this with a root node variable to achieve the same result:

var RootNode:XMLNode = myXML.firstChild;
RootNode.firstChild.childNodes[1];

You can see an example of this in the resource file simpleprocess.fla. 

I could use the following code to refer to the <phone> element:

myXML.firstChild.firstChild.lastChild;

or

myXML.childNodes[0].childNodes[0].childNodes[3];

The childNodes collection and the firstChild and lastChild properties are read-only. This means
you can’t use them to change the structure of the XML object.

Text elements are always the firstChild of the element that contains them. To refer to the text inside
the <address> element, I could use the expression

myXML.firstChild.firstChild.childNodes[1].firstChild.nodeValue;

or

myXML.childNodes[0].childNodes[0].childNodes[1].firstChild.nodeValue;

I could also use the RootNode variable as shown here:

var RootNode:XMLNode = myXML.firstChild;
RootNode.childNodes[0].childNodes[1].firstChild.nodeValue;

144

CHAPTER 4



Again, you can see an example of this in simpleprocess.fla. You may need to uncomment the rele-
vant lines in the file.

All of the child nodes of an element live within the childNodes collection. This is an array of all the
child nodes. As you’ll often want to treat each childNode in a similar way, it makes more sense to work
with the collection as a whole.

Working with the childNodes collection
It’s more common to work with all childNodes in a collection rather than finding single nodes within
the document tree. You can loop through the collection and perform similar actions on all of the
nodes. The code that follows shows how to use a for loop in this way. We can determine how many
children are in the collection of childNodes by using the childNodes.length property. This is the
same as the length property of an array.

for (var i:Number=0; i < myXMLNode.childNodes.length; i++) {
//do something

}

You can determine if an element has child nodes by testing the length property of the collection or
by using the hasChildNodes method. You may want to perform one action for elements with child
nodes and another for elements without children. Using the hasChildNodes method returns a value of
either true or false, so it is often used within if statements, as shown in this code snippet:

if (RootNode.hasChildNodes()) {
//do something with the child nodes

}
else {
//do something else

}

The following example shows how we could display all of the names of the children of a specific node,
in this case, the first <contact> element. I’ve shown the relevant lines in bold. You can also open the
resource file simpleprocess.fla to test the example.

function processXML(success:Boolean):Void {
if (success) {
var RootNode:XMLNode = this.firstChild;
var ContactNode:XMLNode = RootNode.childNodes[0];
for (var i:Number=0; i < ContactNode.childNodes.length; i++) {
trace (ContactNode.childNodes[i].nodeName);

}
}
else {
trace ("Error loading XML file");

}
}

This code assigns the first contact node to an XMLNode variable called ContactNode. We can then loop
through each of the child nodes of that variable and display their names.

145

USING THE XML CLASS



If you test the movie, you should see an Output window similar to the one shown in Figure 4-6.

Figure 4-6. Displaying the child node names

Notice that I used an XMLNode variable called ContactNode to refer to the first <contact> element. The
expression 

ContactNode.childNodes[i].nodeName; 

is much easier to understand than

myXML.firstChild.firstChild.childNodes[i].nodeName;

I could modify the function to display the text within each of the childNodes. Remember that the text
within a node is always the firstChild of that node and that you can find the text using nodeValue.
I’ve shown an example here; you can also see it in the simpleprocess.fla resource file.

function processXML(success:Boolean):Void {
if (success) {
var RootNode:XMLNode = this.firstChild;
var ContactNode:XMLNode = RootNode.childNodes[0];
for (var i:Number=0; i <ContactNode.childNodes.length; i++) {
trace (ContactNode.childNodes[i].firstChild.nodeValue);

}
}
else {
trace ("Error loading XML file");

}
}

Working your way through a complicated XML document can take some time. You have to understand
the document structure and write code accordingly. An alternative way to work with the entire docu-
ment tree is to use recursive functions. This can also be useful if you don’t know the structure of the
file or the names of the nodes.

146

CHAPTER 4



Creating recursive functions
A recursive function is a function that calls itself. You can use a recursive function to extract the con-
tents from the whole document tree. By calling the function again and passing the next branch of the
tree, you can work your way through the entire XML object. You start by calling the function and pass-
ing the root node. If you find child nodes, you call the function again with each of the child nodes. You
repeat the process until you’ve moved through the entire document tree.

This concept can be a little difficult to grasp, so I’ll work through an example to help you understand
it better.

1. Create a new Flash file and save it in the same folder as the address.xml file.

2. Enter the following code. Instead of processing the XML object with the processXML function,
I’ve used it to call another function called showChildren. The showChildren function takes one
parameter, the root node of the XML object, which I’ve specified using this.firstChild.

var myXML:XML = new XML();
myXML.ignoreWhite = true;
myXML.onLoad = processXML;
myXML.load("address.xml");
function processXML(success:Boolean):Void {
if (success) {
showChildren(this.firstChild);

}
else {
trace ("Error loading file");

}
}

3. Add the showChildren function in the Actions panel, underneath the processXML function: 

function showChildren(startNode:XMLNode):Void{
if (startNode.nodeType == 1) {
if (startNode.hasChildNodes()) {
trace (startNode.nodeName + " has child elements:");
for (var i:Number = 0; i < startNode.childNodes.length; i++) {
if (startNode.childNodes[i].nodeType == 1) {
trace ("element: " + startNode.childNodes[i].nodeName);

}
else {
trace ("text: " + startNode.childNodes[i].nodeValue);

}
showChildren(startNode.childNodes[i]);

}
}

}
}

Exercise 2: Processing an XML object with a recursive function

147

USING THE XML CLASS



The function looks confusing at first. It takes an XMLNode variable as a parameter and only proceeds if
the XMLNode is an element node, that is, nodeType == 1. Text nodes can’t have children.

The second if statement determines whether there are any childNodes of the current element node.
If there are, the function traces the name of the node and the words has child elements. 

Next, the function loops through the childNodes of the starting node. If the childNode is an element,
the function traces the word element with the node name. Otherwise, for text elements, it traces the
word text with the text content. 

Finally, the function calls itself and passes the current childNode as a parameter. This repeats the
process at the next level in the document tree. The function stops when it encounters a text node or
when the current node has no childNodes.

4. Save the Flash file and test the movie. You should see an Output window similar to the one
shown in Figure 4-7. You can find the completed file in your resources saved under the name
recursive.fla.

Figure 4-7. Displaying the contents of an XML document using a recursive function

Using a recursive function allows you to process the contents of the document tree without under-
standing the structure. It can also be a more efficient way to write code that processes the document
tree.

So far, we’ve worked with child nodes, but it’s useful to know that you can use ActionScript to find sib-
ling nodes. These are nodes that share the same parent node.

Locating siblings
Flash provides two properties for dealing with siblings: nextSibling and previousSibling. These
properties allow you to locate elements that share the same parent as the current node. You can refer
to the previous and next siblings of the current node using

myXMLNode.previousSibling;
myXMLNode.nextSibling;

148

CHAPTER 4



If there is no previous or next sibling, the property will return undefined, so you can’t find the
previousSibling of the first child node or the nextSibling of the last child node. As both of these
properties are read-only, you can’t use them to move nodes within the document tree.

The following example shows the processXML function modified to return the next and previous sib-
lings of the second <address> element:

function processXML(success:Boolean):Void {
if (success) {
var RootNode:XMLNode = this.firstChild;
var AddressNode:XMLNode = RootNode.childNodes[0].childNodes[1];
trace ("current node: " + AddressNode.nodeName);
trace ("previous: " + AddressNode.previousSibling.nodeName);
trace ("next: " + AddressNode.nextSibling.nodeName);

}
else {
trace ("Error loading XML file");

}
}

I’ve included this example in the simpleprocess.fla resource file. If you test this file, you should see
something similar to the Output window shown in Figure 4-8.

Figure 4-8. Displaying the previous and next sibling node names

As well as working with siblings, you can find the parent element of a node. This might be a quicker
way to locate a node rather than writing a full path starting from the root node.

149

USING THE XML CLASS



Locating parent nodes
You can refer to the parent of a current node using the parentNode property, as shown here:

myXMLNode.parentNode;

In this example, the processXML function displays the name of the parent of the second <address>
element. I’ve made the relevant lines bold.

function processXML(success:Boolean):Void {
if (success) {
var RootNode:XMLNode = this.firstChild;
var AddressNode:XMLNode = RootNode.childNodes[0].childNodes[1];
trace ("parent node is " + AddressNode.parentNode.nodeName);

}
else {
trace ("Error loading XML file");

}
}

You can see the example in the simpleprocess.fla resource file. If you test the file, you should see
an Output window similar to that displayed in Figure 4-9. 

Figure 4-9. Displaying the parent node name

Note that the parentNode property is read-only, so you can’t use it to change the structure of a document
tree.

So far in this chapter, we’ve looked at how to extract information from both element and text nodes
within an XML document. In the next section, I’ll explain how you can work with attributes.

Extracting information from attributes
You refer to attributes differently compared with elements and text. Attributes aren’t children of
element. Rather, they are a collection, or array, within an element. Unlike the childNodes collection,
the attributes collection is an associative array. This means that you can’t use a position number. You
have to refer to each attribute using its name.

The following lines show you how you can refer to the value of an attribute using its name. The two
examples are equivalent. The first uses dot notation while the second uses associative array notation.

150

CHAPTER 4



myXML.firstChild.attributes.attName;
myXML.firstChild.attributes["attName"];

In both examples, I’m finding the attribute called attName within the first child of the XML object
called myXML. 

In this XML fragment,

<?xml version="1.0" encoding="UTF-8"?>
<phoneBook>
<contact id="1">
<name>Sas Jacobs</name>
<address>123 Some Street, Some City, Some Country</address>
<phone>123 456</phone>

</contact>
</phoneBook>

I could display the value of the id attribute of the <contact> element using the following code lines.
Both the second and third lines are equivalent.

var RootNode:XMLNode = myXML.firstChild;
trace(RootNode.firsChild.attributes.id);
trace(RootNode.firstChild.attributes["id"]);

It’s easy to refer to attributes when you know their names. However, there may be occasions when you
don’t know their names. In those cases, it can be useful to loop through the attributes collection, as
shown here:

for (var theAtt:String in myXMLNode.attributes) {
//reference the attribute name using theAtt
//reference the value using myXMLNode.attributes[theAtt])

}

This code is equivalent to saying for each attribute in the attributes collection.

The next example shows the processXML function modified to show the attributes within the first
<contact> element of the address.xml file. The function displays the name and value of each attrib-
ute. Unfortunately, the element only has one attribute so the loop repeats only once.

function processXML(success:Boolean):Void {
if (success) {
var RootNode:XMLNode = this.firstChild;
var ContactNode:XMLNode = RootNode.childNodes[0];
for (var theAtt:String in ContactNode.attributes) {
trace(theAtt + " = " + ContactNode.attributes[theAtt]);

}
}
else {
trace ("Error loading file");

}
}

151

USING THE XML CLASS



In this example, we create a new XMLNode variable called ContactNode to refer to the first <contact>
element. We use a for loop to move through the collection of attributes. Because I’m working with an
associative array, I have to refer to the value of the attribute using ContactNode.attributes[theAtt]).

You can see this example in the simpleprocess.fla resource file. Uncomment the relevant lines and
test the movie. You should see an Output window similar to the one shown in Figure 4-10. 

Figure 4-10. Looping through the attributes collection

You’ve learned a lot about loading external documents and extracting their values within Flash. We
covered the various properties that you could use to move through the document tree. I showed you
how to find the name of a node and the value of text within a node. The theory we’ve covered so far
will make more sense when you work through an exercise.

Putting it all together
In this section, we’ll put together everything we’ve covered so far in the chapter and create a simple
XML application. We’ll use the photoGallery.xml file that you created in Chapter 3. The application
will load the content from the XML document and add the contents to create a photo gallery.

We’ll work through the following steps to create our application. These steps are likely to be the same
ones you use each time you load an external XML document.

1. Create the XML object.

2. Set the ignoreWhite property to true.

3. Specify the name of the function that will deal with the loaded XML document.

4. Load the XML document.

5. Within the load function, test whether the file has loaded successfully.

6. Display the document tree with a trace action to check that you’ve loaded the contents correctly.

7. Set a variable referring to the RootNode of the XML document.

8. Work through the document tree, adding content to the Flash movie.

152

CHAPTER 4



The completed file gallery_completed.fla is included with your resources for Chapter 4 in case you
want to see how the finished application works. Note that I’ve used ActionScript version 2.0 and ver-
sion 2.0 components in the files, so you’ll need at least Flash MX 2004 to complete the exercise.

In this exercise, we’ll create a simple Flash photo gallery that loads external images. We’ll take the
images from the photos folder included with the Chapter 4 resources. You can also use your own
images if you’d prefer. Just add them to the photos folder and the XML document.

Setting up the environment

1. Move the photos folder, the starter file gallery.fla, and the photoGallery.xml file from the
resources to the same directory on your computer. 

2. Open gallery.fla. Figure 4-11 shows the interface.

Figure 4-11. The gallery.fla interface

The interface includes a static text field containing the text Photo gallery. There are two dynamic
text fields, one on the left for the caption and one on the right for the comments about the image.
They have the instance names caption_txt and comment_txt, respectively.

There is an empty movie clip called empty_mc below the caption. We’ll use this to display the photos.
The top right of the interface includes a ComboBox component, gallery_cb, and two buttons,
back_btn and forward_btn. Users will choose the gallery from the ComboBox component and navi-
gate through the photos with the two buttons.

Exercise 3: Creating an XML photo gallery

153

USING THE XML CLASS



The XML document
We created the XML document photoGallery.xml in Chapter 3. The following code shows a summary
of the document structure:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<photoGallery>
<location locationName="galleryName">
<photo filename="filename.jpg" caption="caption content">
Text

</photo>
<photo filename="filename.jpg" caption="caption content">
text

</photo>
</location>
<location locationName="galleryName">
<photo filename="filename.jpg" caption="caption content">
Text

</photo>  
</location>

</photoGallery>

The root element <photoGallery> contains one or more <location> elements. Each <location> has
a single attribute locationName and contains one or more <photo> elements. The <photo> elements
contain a filename and caption attribute as well as some descriptive text.

Feel free to update the XML document and photos folder with your own contents. The Flash movie is
set up for landscape images with a width of up to 290 pixels, but you can change the movie if you’re
using differently sized images.

Loading the XML document into Flash
We’ll load the XML document into the gallery.fla movie.

3. Create a new layer in the gallery.fla file and name it actions.

4. Click the first frame of the actions layer and open the Actions panel with the F9 shortcut key.

5. Add the code shown here. This code loads the document photoGallery.xml into the photoXML
object. When the loading is completed, the loadPhotos function displays the contents of the
XML object.

var photoXML:XML = new XML();
photoXML.ignoreWhite = true;
photoXML.onLoad=loadPhotos;
photoXML.load("photoGallery.xml");
stop();
function loadPhotos(success:Boolean):Void{
if (success) {
trace (this);

}
else {
trace("Error in loading XML file");

}
}

154

CHAPTER 4



6. Save the movie and test it with the CTRL-ENTER shortcut key (CMD-RETURN on a Macintosh). You
should see something similar to the image shown in Figure 4-12.

Figure 4-12. Testing that the XML document has been loaded into Flash

You’ll notice that Flash has ignored the CDATA block from the XML document. Instead, the <b> tag has
been converted to the HTML entities &lt; and &gt;. As we discovered earlier, Flash doesn’t recognize
CDATA.

Once the XML document has been loaded into the photoXML object, it’s time to start populating the
interface.

Loading the ComboBox component
We’ll start by adding the names of each location to the ComboBox component. The name comes from
the locationName attribute in the <location> element. 

7. Create a new XMLNode variable called RootNode at the top of the actions layer. We create it out-
side of the loadPhotos function so that we can refer to the root node of the XML object any-
where within the Flash movie.

var RootNode:XMLNode;

8. Modify the loadPhotos function as shown here. I’ve indicated the new lines in bold. The func-
tion calls the loadCombo function after successfully loading the XML file.

function loadPhotos(success:Boolean):Void{
if (success) {
RootNode = this.firstChild;
loadCombo();

}
else {
trace("Error in loading XML file");

}
}

155

USING THE XML CLASS



9. Add the loadCombo function below the loadPhotos function. I’ve used the addItem method of
the ComboBox component to add the locationName attribute values. Notice that I’ve done this
inside a loop so that I can process all child elements of the root node in the same way. I have
also added an item --Select-- at the beginning of the ComboBox.

function loadCombo():Void {
var galleryName:String;
gallery_cb.addItem("-- Select --");
for (var i:Number=0; i< RootNode.childNodes.length; i++) {
galleryName = RootNode.childNodes[i].attributes.locationName;
gallery_cb.addItem(galleryName);

}
}

10. Test the movie again. You should see the gallery names in the
ComboBox component as shown in Figure 4-13. 

At the moment, when we select a value from the ComboBox compo-
nent, nothing happens. We actually want the first image from the
selected gallery to be displayed on the Stage. To achieve that, we’ll need
to add an event listener to the ComboBox component.

Adding an event listener to the ComboBox

ActionScript is an event-driven language. We use it to respond to events that occur in a movie, for
example, the click of a button or selecting a value from a ComboBox. Because we want something
specific to happen when these events occur, we can use an event listener. Event listeners listen for spe-
cific events and respond by calling a function.

We want an image to display when the value of the item in the ComboBox changes. We can only do
this with an event listener that listens for the change event of the ComboBox. When the listener
detects that event, it will call a function to deal with the changed value in the ComboBox.

11. Add the following code above the loadPhotos function. The code creates an object called
CBOListener, which listens for the change event. When the event fires, the listener calls the
loadGallery function.

var CBOListener:Object = new Object();
CBOListener.change = loadGallery;
gallery_cb.addEventListener("change", CBOListener);

12. Add the loadGallery function below the loadCombo function. The function receives the object
that called it as a parameter, that is, the listener. It traces the label of the selected option using
evtObj.target to locate the target of the event listener.

function loadGallery(evtObj:Object):Void {
trace (evtObj.target.selectedItem.label);

}

156

CHAPTER 4

Figure 4-13. Testing that the
ComboBox component has

been populated



13. Test the movie. You should see something similar to Figure 4-14 when you make a selection in
the ComboBox.

Figure 4-14. Testing the ComboBox listener

Once we have detected the selected gallery, we can move to that section of the document tree and
load the first image.

Loading the photos

The first task is to move through the document tree and locate the selected gallery. We’ll create some
variables to help out.

14. Add new variables called selectedGallery, photoPosition, GalleryNode, and PhotoNode
below the RootNode variable at the top of the Actions panel. Set the types to String, Number,
and XMLNode, as shown here. These variables will have scope throughout the Flash movie
because we haven’t created them within a function.

var RootNode:XMLNode;
var selectedGallery:String;
var photoPosition:Number;
var GalleryNode:XMLNode;
var PhotoNode:XMLNode;

15. Modify the loadGallery function as shown here. The new lines appear in bold. The function
finds if we’ve selected a gallery and sets the variable selectedGallery. It then finds the correct
gallery and sets the position in the document tree within the variable GalleryNode. Finally, it
calls the loadPhoto function, passing a value of 0 to indicate that the first image should display.
The break statement ends the loop.

function loadGallery(evtObj:Object):Void {
var galleryName:String;
if (evtObj.target.selectedItem.label !="— Select —") {
selectedGallery = evtObj.target.selectedItem.label;
for (var i:Number=0; i< RootNode.childNodes.length; i++) {
galleryName = RootNode.childNodes[i].attributes.locationName;
if (galleryName ==  selectedGallery) {

157

USING THE XML CLASS



GalleryNode = RootNode.childNodes[i];
photoPosition=0;
loadPhoto(photoPosition);
break;

}
}

}
}

16. Add the function loadPhoto below the loadGallery function. This function traces the file
name of the first image in the gallery.

function loadPhoto(nodePos:Number):Void {
trace (GalleryNode.firstChild.attributes.filename);

}

17. Test the movie. Select a gallery. You should see something similar to the image shown in Figure 4-15.

Figure 4-15. Testing the loadPhoto function

Now we need to use the file name to display the image from the photos folder in the empty movie
clip. We also need to add text from the XML document to the caption and comment fields.

18. Modify the loadPhoto function as shown here. The function sets the PhotoNode variable and
finds the file name, caption, and comments from the document tree. The loadMovie action
loads the image from the photos folder into empty_mc. The text and htmlText properties dis-
play the caption and comments. Notice that we set the html property of the comment_txt field
to true so that it can render the HTML tags from the CDATA section of the XML document.

function loadPhoto(nodePos:Number):Void {
PhotoNode = GalleryNode.childNodes[nodePos];
var filename:String = PhotoNode.attributes.filename;
var caption:String = PhotoNode.attributes.caption;
var comments:String = PhotoNode.firstChild.nodeValue;
empty_mc.loadMovie("photos/" + filename);
caption_txt.text = caption;

158

CHAPTER 4



comment_txt.html = true;
comment_txt.htmlText = comments;

}

19. Test the movie again and select an image gallery. You should see something similar to Figure 4-16.

Figure 4-16. Testing that the first image loads

If you select the other galleries, the first image from each will load. A problem arises when we choose
the -- Select -- option. The current image, caption, and comment remain. It would be better if this
selection cleared the image and the text fields.

20. Change the loadGallery function as shown here. If we choose the -- Select -- item,
empty_mc is unloaded and the text fields are cleared.

function loadGallery(evtObj:Object):Void {
var galleryName:String;
if (evtObj.target.selectedItem.label !="-- Select --") {
selectedGallery = evtObj.target.selectedItem.label;
for (var i:Number=0; i< RootNode.childNodes.length; i++) {
galleryName = RootNode.childNodes[i].attributes.locationName;
if (galleryName ==  selectedGallery) {
GalleryNode = RootNode.childNodes[i];
photoPosition=0;
loadPhoto(photoPosition);
break;

}
}

}
else {
empty_mc.unloadMovie();
caption_txt.text = "";
comment_txt.htmlText = "";

}
}

21. Test the movie again. Select an image gallery and then choose the first option in the
ComboBox. The interface should clear.

159

USING THE XML CLASS



So far, we can view the first image in each image gallery. The next step is to configure the buttons so
we can navigate through all of the photos in each gallery.

Configuring the buttons

The gallery movie includes two buttons: back_btn and forward_btn. When the back button is pressed,
we should move to the previous image, if one exists. Conversely, the forward button should move us
to the next image. We’ll start by disabling the buttons so that we can’t navigate until after we’ve
selected an image gallery.

22. Enter the following lines above the photoXML variable declaration at the top of the actions
layer:

back_btn.enabled = false;
forward_btn.enabled = false;

23. Change the loadGallery function. We’ll need to enable the buttons after we have selected a
gallery. We’ll also need to disable the buttons when the -- Select -- option is chosen and
clear the selectedGallery variable.

function loadGallery(evtObj:Object):Void {
var galleryName:String;
if (evtObj.target.selectedItem.label !="-- Select --") {
selectedGallery = evtObj.target.selectedItem.label;
for (var i:Number=0; i< RootNode.childNodes.length; i++) {
galleryName = RootNode.childNodes[i].attributes.locationName;
if (galleryName ==  selectedGallery) {
GalleryNode = RootNode.childNodes[i];
photoPosition=0;
loadPhoto(photoPosition);
back_btn.enabled = true;
forward_btn.enabled = true;
break;

}
}

}
else {
empty_mc.unloadMovie();
caption_txt.text = "";
comment_txt.htmlText = "";
selectedGallery = "";
back_btn.enabled = false;
forward_btn.enabled = false;

}
}

24. Test the movie. Check that the buttons are enabled and disabled as you choose different
gallery options.

Finally, we’ll need to make the back and forward buttons work. We created the variable
photoPosition earlier so we could keep track of the current photo number and the childNode within
the selected gallery.

160

CHAPTER 4



25. Enter the following lines above the loadPhotos function at the top of the actions layer. The
onRelease functions test whether there is a previousSibling or nextSibling of the current
PhotoNode. If so, we either decrement or increment the photoPosition variable and call the
loadPhoto function.

back_btn.onRelease = function():Void {
if (PhotoNode.previousSibling.nodeName != undefined) {
photoPosition--;
loadPhoto(photoPosition);

}

forward_btn.onRelease = function():Void {
if (PhotoNode.nextSibling.nodeName != undefined) {
photoPosition++;
loadPhoto(photoPosition);

}
}

26. Test the movie for the last time and check that the gallery is functioning properly.
Congratulations on completing the exercise. You can find the completed file saved as
gallery_completed.fla in your resources for this chapter.

Points to note from exercise 3

It’s important to define variables in the appropriate place. If you’ll only use a variable inside a
function, you should define it inside that function using a var statement. When the function
has finished running, the variable will cease to exist. This type of variable has local scope.

If you want to use a variable in more than one function, you’ll need to define it outside the
functions. The variable will then have timeline scope, and it will be available to every block of
code on the current timeline. I normally list these variables at the top of a layer for convenience.

You can set, retrieve, and change the values of timeline variables within functions. The
RootNode variable is a perfect example of a timeline variable. We declare the variable at the
top of the actions layer but its value isn’t set until we call the loadPhotos function.

There is probably a more elegant way of dealing with the back and forward action of the but-
tons. For example, I could have disabled the back button if we were at the first photo and the
forward button if we were at the last photo in the collection. Instead, I chose to use the
previousSibling and nextSibling properties so you could see how they work.

If you followed the example, you’ll notice that, in each step, I wrote a little bit of code and then
tested the movie. It’s very important that you test your movie regularly. If you leave it too long
before testing, it will be much harder to debug than if you have made only small changes each
time. Sometimes, errors can compound and create strange results, making it hard to track
down the cause of the problem.

You probably also noticed that I was fairly specific about where you should place the code on
the actions layer. In fact, you could have put the code in just about any order and the gallery
would still have worked. I wanted you to keep your code in a logical order so you could com-
pare your content with the completed file. That way it’ll be easier for you to locate any errors
in your code.

161

USING THE XML CLASS


